Lesson 6. Sets, Summations, For Statements

1 Sets

- A set is a collections of elements/objects, e.g.

$$
\begin{equation*}
S=\{1,2,3,4,5\} \quad \text { Fruits }=\{\text { Apple, Orange, Pear }\} \tag{1}
\end{equation*}
$$

- "in" symbol:

$$
i \in N \quad \Leftrightarrow \quad \text { "element } i \text { is in the set } N "
$$

- For example:
\square

2 Summations

- Summation symbol over sets:

$$
\sum_{i \in N} \Leftrightarrow \quad \text { "sum over all elements of } N "
$$

- For example:
\square
- Common shorthand: if $N=\{1,2, \ldots, n\}$, then

$$
\sum_{i \in N} \text { is the same as } \sum_{i \in\{1,2, \ldots, n\}} \text { as well as } \sum_{i=1}^{n}
$$

Example 1. Let the sets S and Fruits be defined as above in (1). Write each of the following as compactly as possible using summation notation:
a. $x_{\text {Apple }}+x_{\text {Orange }}+x_{\text {Pear }}$
b. $1 y_{1}+2 y_{2}+3 y_{3}+4 y_{4}+5 y_{5}$

3 For statements

- "for" statements over sets:

$$
\text { for } i \in N \quad \Leftrightarrow \quad \text { "repeat for each element of } N "
$$

- For example:

$$
c_{j} x_{1}+d_{j} x_{2} \leq b_{j} \quad \text { for } j \in \text { Fruits } \quad \Leftrightarrow
$$

- Common shorthand: if $N=\{1,2, \ldots, n\}$, then
"for $i \in N$ " is the same as "for $i \in\{1,2, \ldots, n\}$ " as well as "for $i=1,2, \ldots, n$ "
- Sometimes we say "for all $i \in N$ " instead of "for $i \in N$ "

4 Multiple indices

- Sometimes it may be useful to use decision variables with multiple indices
- Example:
- Set of hat types: $H=\{A, B, C\}$
- Set of factories: $F=\{1,2\}$
- Each hat type can be be produced at each factory
- Define decision variables:

$$
\begin{equation*}
x_{i, j}=\text { number of type } i \text { hats produced at factory } j \quad \text { for } i \in H \text { and } j \in F \tag{2}
\end{equation*}
$$

- What decision variables have we just defined? How many are there?
\square

Example 2. Using the decision variables defined in (2), write expressions for
a. Total number of type C hats produced
b. Total number of hats produced at facility 2

Use summation notation if possible.

- Suppose

$$
c_{i, j}=\text { cost of producing one type } i \text { hat at factory } j \quad \text { for } i \in H \text { and } j \in F
$$

- If we produce $x_{i, j}$ hats of type i at factory j (for $i \in H$ and $j \in F$), then the total cost is

Example 3. Let $M=\{1,2,3\}$ and $N=\{1,2,3,4\}$. Write the following as compactly as possible using summation notation and "for" statements.

$$
\begin{aligned}
& \text { Let } y_{1}=\text { amount of product } 1 \text { produced } \\
& y_{2}=\text { amount of product } 2 \text { produced } \\
& y_{3}=\text { amount of product } 3 \text { produced } \\
& y_{4}=\text { amount of product } 4 \text { produced } \\
& \\
& a_{1,1} y_{1}+a_{1,2} y_{2}+a_{1,3} y_{3}+a_{1,4} y_{4}=b_{1} \\
& a_{2,1} y_{1}+a_{2,2} y_{2}+a_{2,3} y_{3}+a_{2,4} y_{4}=b_{2} \\
& a_{3,1} y_{1}+a_{3,2} y_{2}+a_{3,3} y_{3}+a_{3,4} y_{4}=b_{3}
\end{aligned}
$$

